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Quantum Mechanics on Topologically 
Nontrivial Spaces 

J.  S l a d k o w s k i  ~ 

Received June 4, 1990 

The formulation of quantum mechanics on topologically nontrivial spaces is 
discussed. It is pointed out that the "obstacles" are represented by cohomology 
groups and not only by ~rl(M) as usually stated. Some widespread errors and 
misunderstandings are cleared up. 

Recently much attention has been devoted to formulation of quantum 
mechanics on topologically nontrivial spaces [see, e,g., Schulman (1981) 
and Polonyi (1988)]. The subject is interesting in itself and it is also believed 
that it has important  physical implications: topologically nontrivial configur- 
ations play an important role in solid state physics, the confinement mechan- 
ism, multidimensional field theory, and so on. The Aharonov-Bohm effect 
is the best known influence of nontrivial topology on physical systems 
(Aharonov and Bohm, 1959; Ryder, 1985). In this effect and also in the 
so-called Hosotani  mechanism (Hosotani,  1989; Green et al., 1986; 
Stadkowski, 1990a, b; Mafika et aL, 1989) we have a nontrivial background 
gauge field with vanishing curvature. These effects are caused by nontrivial 
holonomy groups (Kobayashi  and Nomizu,  1963). Due to the Vanishing of 
the curvature, we must have a non-simply-connected configuration space 
to have a nontrivial holonomy group; see (Kobayashi  and Nomizu,  1963) 
for details. 

Misled by this, one usually supposes that the configuration space must 
not be simply connected to reveal topological effects (Schulman, 1981; 
Poionyi, 1988). The point of  this note is that in general, the responsible 
"topological  defects" are described by cohomology groups. 
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To show this, let us analyze the quantum mechanics of a particle 
interacting with a (classical) electromagnetic field [ U(1)-gauge field]. The 
stress-energy tensor F~,~ might be closed but not exact: 

dF = 0 and F ~ dA (1) 

This may happen if the second cohomology group of the configuration 
space M is nontrivial, H2(M, •) ~ 0 (dim M >  1). Equation (1) means that 
the gauge potential exists only locally and the principle of minimal coupling 

p~ -~P~" _ e  A~ (2) 
c 

cannot be applied. 
To deal with such situations the "multivalued theory" has been 

developed (Polonyi, 1988; Dubrovin et al., 1982; Novikov, 1982). One often 
even claims that physical quantities are only well defined locally (cf. Polonyi, 
1988, and references therein). This seems strange. A free particle has a 
well-defined momentum p";  why should this also not be so after "turning 
on" a magnetic field (the momentum, however, may not be describable in 
one coordinate patch, but this does not cause any conceptual problem)? 
We can hardly accept such "locality," especially when it is not necessary. 

The problem is caused by an oversimplified description. The U(1)- 
gauge potential is a connection form w (Kobayashi and Nomizu, 1963; 
Trautman, 1981) on a principal fiber bundle P[M, U(1)]. Physicists prefer 
the local description defined by a (local) section o- of the bundle P (gauge 
condition): 

A~(x)  dx" = tr* to (3) 

The vector potential A , ( x )  is used in (2). If the appropriate bundle is 
nontrivial, there is no global section and the vector potential is defined only 
locally. 

But does this mean that the physical quantities are defined only locally? 
The physical gauge field is described by the connection form to and is well 
defined globally (and single valued!). The locality is only an artifact of the 
formalism being used. 

We have solved our conceptual problems. Unfortunately, it is usually 
a horrible task to try to solve the appropriate equations using the fiber 
bundle formalism. We are compelled to use the local description to obtain 
a differential equation that we can try to solve. Usually, we face the problem 
of multivaluedness (Schulman, 1981; Polonyi, 1988; Ryder, 1985; Novikov, 
1982). This can be avoided by reformulating the quantum mechanical 
problem on the covering space of the configuration. Unfortunately, this is 
not always so. To be as general as possible, let us suppose that we face a 
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problem where a k-form to is closed but not exact. We are looking for a 
minimal covering space 117/, 

p 
M (4) 

so that p ' t o  = dA. Let us choose a basis ( 7 1 ,  �9 �9 " ,  ' ~ n }  in the kth homology 
group HK (M, Z) so that 

Iv (0  i > j  ,t~ gi~0, i - j  (5) 

I f  all the 6i vanish, then to is exact. I f  to is not exact, we must look for a 
(universal) covering space. Such a space always exists due to the following 
theorem (Greenberg, 1967). 

Theorem 1. Every connected manifold has a universal covering space 
that is also a manifold. Unfortunately, the following theorems (Spanier, 
1966; Whitehead, 1978) say that only the k = 1 case can be successfully 
dealt with in such a way. 

Theorem 2. I f  p : (X, Xo) ~ [B, p(xo)] is a covering, then 

( p , ) ,  : 1r.(X, Xo)" ~r,[B, p(x0)] 

is an isomorphism for all n - 2. 

Theorem 3 (Hurewicz). I f  X is simply connected,  then the first non- 
vanishing homotopy  group is isomorphic to the first nonvanishing integer 
homology group. 

The formulation of  the problem in a "covering space" with nondiscrete 
fiber does not help. Mathematicians have introduced the notion of fibration 
(Spanier, 1966; Whitehead, 1978). We have the following facts. 

Theorem 4. Let p : X ~  B be the projection of a fiber bundle, and 
suppose that B is paracompact .  Then p is a fibration. 

Theorem 5. Let p : X ~ B be a fibration whose fiber F is contractible 
in X. Then ~ , ( B ) = ~ r , ( X ) O T r , _ l ( F )  for all n - 2 .  

Theorem 6. I f  the fibration p : X ~ B has a cross section, then ~r,(X) = 
~ , ( F ) O ~ , ( B )  for all n ->2. 

Theorem 7. I f  the fiber F of the fibration p : X ~ B has only constant 
path, then (P.)n : 7r,(X, Xo) ~ 7r,(B, Xo) is an isomorphism for all n -> 2. 

From Theorems 1-7 it follows that only the case with k = 1 can be 
simplified by describing it in the appropriate  covering space. The Aharonov-  
Bohm effect belongs to that class. 
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Example 1. Let us suppose that, according to (5), K = 1, 8i ~ 0, for 
i - j .  The monodromy group of the minimal covering space is exactly 71J, 
the free Abelian group with j generators. This covering space may not be 
simply connected (and universal). In the Aharonov-Bohm effect we have 
j = 1 and covering is universal. 

Most of  the technical problems are in fact not caused by nonexactness 
of  the appropriate differential forms, but simply by the lack of global 
coordinate systems. There is little we can do unless the covering space 
admits global coordinates. Nevertheless, the description in the universal 
covering space is usually much easier even if the covering space is not 
simply connected; e.g., S 2 is much more convenient as a configuration space 
than RP 2. We must be careful not to impose any physical meaning on 
"fictitious" multivaluedness. A solution of the problem formulated in the 
covering space "joins different" points of  the fiber and defines a representa- 
tion of the first homotopy group of  the true configuration space on the set 
values of the wave function. Only the solutions defining the trivial rep- 
resentation represent true solutions. One often forgets about that (Schulman, 
1981; Polonyi, 1988; Carlen and Loffredo, 1989). 

Example  2. Let M = S1.  The universal covering space is R. We can 
describe a free particle moving on the circle in R via the Hamilton operator: 

-1  d 2 
H 2m d~ 2 (6) 

but only the periodic solutions describe the particle moving on the circle. 
The twisted solutions 

O(x + 2~-) = e'KO(x) (7) 

represent another problem. Namely, M = [0, 27r] with the boundary prob- 
lems defined by (7). Problems with different K's are unitary, not equivalent, 
and describe physically different configurations. There is no need to "gen- 
eralize" quantum mechanics as done, e.g., in Schulman (1981), Polonyi 
(1988), and Carlen and Loffredo (1989). We cannot give any physical 
meaning to the (abuse of) a coordinate system! We simply should find the 
correct Hilbert space to describe it. But this is another problem. 
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